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DNM1 encephalopathy

A new disease of vesicle fission

[OPEN]

ABSTRACT

Objective: To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1),
encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype corre-
lations and predicted functional consequences based on structural modeling.

Methods: We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mu-
tations. We compared mutation data to known functional data and undertook biomolecular mod-
eling to assess the effect of the mutations on protein function.

Results: We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an
inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent
p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intel-
lectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile
spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients
had profound global developmental delay without seizures. In addition, we describe a single
patient with normal development before the onset of a catastrophic epilepsy, consistent with
febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or
middle domains, and structural modeling and existing functional data suggest a dominant-
negative effect on DMN1 function.

Conclusions: The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous,
in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.
Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encepha-
lopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this
variant presents a prime target for therapeutic intervention. Neurology® 2017;89:1-10

GLOSSARY

DNM1 = dynamin 1; EPGP = Epilepsy Phenome/Genome; ExAC = Exome Aggregation Consortium; GTCS = generalized
tonic-clonic seizures; ILAE = International League Against Epilepsy; KD = ketogenic diet.

Dynamin 1 (DNM1; NM_004408) is located on chromosome 9q34.11 and encodes DNM1,
a GTPase involved in synaptic vesicle fission for receptor-mediated endocytosis on the pre-
synaptic plasma membrane."! DNM1 self-assembles into multimeric spirals around the necks
of budding vesicles.” Functional consequences of DnmI mutations have been demonstrated in
animal models such as Drosophila temperature-sensitive shibire flies, in which mutations
caused depletion of synaptic vesicles due to blocked endocytosis.>* Furthermore, the fitful
mouse, heterozygous for a spontaneous mutation in the middle domain of Dnm1, has recur-
rent seizures.’

De novo mutations in DNM1I have been identified in patients with severe childhood epi-
lepsies in large-scale genetic studies.®” Pathogenic variants in DNM1 account for up to 2% of
patients with infantile spasms or Lennox-Gastaut syndrome.”

*These authors contributed equally to the manuscript.

Author affiliations are provided at the end of the article.
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typic and genetic spectrum of DNM1 enceph-
alopathy. We find that patients with DNM1
encephalopathy have a relatively homoge-
neous phenotype of severe to profound intel-
lectual disability, hypotonia, and epilepsy
starting with infantile spasms with frequent
evolution to Lennox-Gastaut syndrome. All
de novo mutations cluster in the GTPase
and middle domains, and structural modeling
provides additional evidence of a dominant-
negative mechanism leading to impaired syn-
aptic vesicle endocytosis.

METHODS Patients. Patients with pathogenic DNM1 var-
iants were identified between the beginning of 2015 and summer
2016 from various genetic sequencing projects for patients with
epilepsy, including the EuroEPINOMICS RES project, Epilepsy
Phenome/Genome (EPGP), and Epi4K projects’; from patient
reports®’; and from diagnostic laboratories. A detailed medical
history, including epilepsy, development, and neurologic status,
was obtained for each patient. EEG and imaging data were re-
viewed. Seizures and epilepsy syndromes were classified according
to the International League Against Epilepsy (ILAE) classification

scheme.'®

Standard protocol approvals, registrations, and patient
consents. For patients recruited within the EuroEPINOMICS-
RES project or the EPGP/Epi4K project, site-specific institu-
tional review boards approved the study. Patients identified by
routine clinical genetic testing gave informed consent according
to ethics and legal regulations at the individual centers. Signed
informed consent was obtained from all study participants or

their legal representatives.

Mutation analysis. Mutations were identified with research or
clinical testing using next-generation sequencing; patients 3 and 8
from EuroEPINOMICS’; patients 5, 7, and 19 from EPGP/
Epi4K and patients 1, 2, 15, 17, and 21 by diagnostic whole-
exome sequencing or research protocols. Sequencing and data
analysis were performed as previously described.*”!'" Sanger
sequencing was used in all patients and parents to confirm the
mutation and to study the inheritance of the mutation. None of
the patients included in this project were found to have additional

explanatory genetic findings.

Computational structural modeling. Structures for DNM1
(PDB: 3ZVR),"> GDP-AIF4 and magnesium bound to GTPase
domain (PDB: 2X2E),'? and DNM3 (PDB:5A3F)"® were
downloaded from the protein data bank.' Graphics were gen-
erated with open-source PyMol (www.pymol.org). Variants from
the Exome Aggregation Consortium (ExAC) database included

only missense changes with =2 alleles."

RESULTS Mutational spectrum. The current study re-
viewed data from 21 patients, including 19 sporadic
patients and a sibling pair (patients 12 and 13, previ-
ously reported®), resulting in a total of 20 indepen-
dent mutations (tables 1 and 2). Nine of 20
independent patients (45%) carried recurrent muta-
tions within the DNMI gene. The most common
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mutation was the ¢.709C>T (p.Arg237Trp) muta-
tion, which was found in 6 of 20 independent pa-
tients (30%). In addition, mutations affecting the
p.Gly359 amino acid residue were identified in
3 of 20 patients (15%; p.Gly359Ala in 1 patient,
p-Gly359Arg in 2 patients), and alterations affecting
the p.Lys206 amino acid residue were identified in 2
of 20 patients (10%; p.Lys206Asn and p.Lys206-
Glu). All mutations were confirmed to be de novo,
except for the affected sibling pair whose father was
shown to have 5.5% mosaicism on leucocyte DNA.?
Fourteen of 20 mutations (70%), including the recur-
rent ¢.709C>T (p.Arg237Trp) mutation, occurred
in the GTPase domain of DNM].

The ExAC dataset' is derived from a control pop-
ulation, and observed variants are considered benign.
Plotting the location of missense variants in DNM1
shows a stark pattern of segregation between patho-
genic DNM1 variants and benign variants (figures 1
and 2A). The ExAC variants cluster on the surface of
the protein with none observed in either the GTP
binding pocket of the GTPase domain or any of the
oligomerization interfaces in the middle domain. This
clustering indicates hot-spot pathogenic regions
within the protein.

Phenotypes of patients with DNMI encephalopathy. For
the analysis of DNMI-related phenotypes, all 21 pa-
tients were included (6 female, 15 male, median age
atinclusion 8 years, range 1-24 years). Pregnancy and
delivery were unremarkable in all patients with nor-
mal birth parameters. Patient 18 died at 2 years of
age, before inclusion in this study.

Development. All patients with DNM1 encephalop-
athy were nonverbal with severe to profound intellec-
tual disability. In 17 of 21 patients (81%),
developmental delay was apparent before seizure
onset, while regression started with the onset of seiz-
ures in 4 of 21 patients (19%). Except for a single
patient (patient 20) who had normal development
until the onset of refractory seizures at the age of
4.5 years, all patients had significant developmental
delay in the first year of life. Seventeen of 21 patients
(81%) were nonambulatory.

Seizures. Seizures occurred in 19 of 21 patients
(90%). Patient 2 did not have seizures, and patient
17 showed only subcortical, nonepileptic myoclonic
jerks. Seizures began at a median age of 7.6 months
(range 1 month—4.5 years). Patient 20 was an out-
lier with onset at 4.5 years with a febrile infection-
related epilepsy syndrome phenotype. In terms of
seizure type, 15 of 19 patients presented with infan-
tile spasms, whereas 1 patient each presented with
myoclonic seizures, tonic seizures, generalized tonic-
clonic seizures (GTCS), and focal seizures; informa-
tion was not available for 1 patient. Later, spasms
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[ Table 1 Clinical features of patients with DNM1 encephalopathy

Patient (sex) and age
at assessment
1(F)8y

2M2y

3(MFc8y

4 (M 18y
5(F915y

6(M)9y

7M8y

8(F)°16y

9(M) 7y

10 (M) 24y

11 (M) 3y

12 (M)® 2 y (sib of 13)
13 (F)° 5 y (sib of 12)
14 (M) 12y

15(M) 19y

16 (M) 13y

17M) 1y

18(F) 1y

19 M9 7y

Mutation®

c.127G>A,
p.Gly43Ser

c.134G>A,
p.Ser45Asn

c.194C>A,
p.Thr65Asn

c.416G>T,
p.Gly139Val

¢.529G>C,
p.Alal77Pro

c.616A>G,
p.Lys206Glu

c.618G>C,
p.Lys206Asn

c.709C>T,
p.Arg237Trp

c.709C>T,
p.Arg237Trp

c.709C>T,
p.Arg237Trp

c.709C>T,
p.Arg237Trp

c.709C>T,
p.Arg237Trp

c.709C>T,
p.Arg237Trp

c.709C>T,
p.Arg237Trp

c.731 G>A,
p.Ser238lle

c.1037G>T,
p.Gly346Val

c.1075G>A,
p.Gly359Arg

c.1075G>A,
p.Gly359Arg

c.1076G>C,
p.Gly359Ala

Seizures

AS, MSP

None

ISP AS, TS, FS, SE
IS AS, TS, GTCS,

SE

IS AS, AtS, GTCS
ISP AS, MS, TS

ISP TS, AtS

ISP AS, MS, TS,
GTCS, FS, SE

IS AtS, GTCS

IS AS, GTCS, FS
IS AS, AtS, GTCS
IS MS, GTCS, FS

IS, MS, TS,° GTCS, FS
ISP AS, MS, AtS, GTCS
GTCS®

ISP MS, TS

None

ISP MS, TS, GTCS,

FS, SE
Is®

Age at

seizure onset

3 wk

None

13 mo

4 mo

7 mo

2 mo

6 mo

12 mo

6 mo

3 mo

5 mo

4 mo

NA

5 mo

8 mo

6 mo

3 mo

1 mo

2 mo

Seizure outcome

Sz-free

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Refractory

Unknown

Refractory, patient
died at age 2

Sz-free on KD

EEG features

Slow bg

Normal

Hyps, MFED, GPFA,
slow bg

Hyps, MFED, SSW, GSW,

slow bg

MFED, SSW, slow bg

MFED

Hyps, MFED, SSW,
slow bg

Hyps, SSW, GSW, GFPA,

slow bg

Hyps, SSW, FED
MFED, SSW, slow bg
Hyps, MFED, GSW,

slow bg

Hyps, MFED, FED,
slow bg

MFED, FED, slow bg
Hyps, MFED, SSW,
GSW, GPFA, slow bg
NA

Hyps, MFED, FED,
slow bg

MFED, slow bg
Hyps, MFED, SSW,
GSW, GPFA

SSW

Development

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

Nonverbal, severe ID,
hypotonia

Nonverbal, severe ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

Nonverbal, severe ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

Nonverbal, severe ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

NVNA, profound ID,
hypotonia

MRI

Normal

Cerebral atrophy

Normal

Normal

Normal

Cerebral atrophy

Cerebral atrophy

Cerebral atrophy

Normal

Normal

Cerebral atrophy

Normal

Normal

Hypoplasia of FL, MCM,

flattening of posterior skull

Thin CC, delayed
myelination

Normal

Cerebral atrophy

Other features

Microcephaly, spasticity, dystonia

Spastic quadriplegia, dystonia
Normal development before sz
onset

Normal development before sz

onset, dystonia

Microcephaly

Dystonia

Spastic quadriplegia, dystonia

Dystonia

Dystonia

Dystonia

Spasticity

Microcephaly, multifocal
subcortical myoclonus

Microcephaly, spasticity, dystonia

Microcephaly, normal
development before sz onset

Continued



[ Table 1 Continued

I

Age at

Patient (sex) and age
at assessment

Other features

MRI

Development

Seizure outcome EEG features

seizure onset

Seizures

Mutation?

FIRES at 4.5 y, before normal

development

Normal

NVNA, profound ID

Ay Refractory GSW, slow bg

MS, TS, GTCS,
FS° rSE

c.1117G>A,
p.Glu373Lys

20(F) 5y

Microcephaly

NVNA, profound ID,

hypotonia

Hyps, MFED, slow bg

Sz-free

mo

IS,> MS

c.1190G>A,
p.Gly397Asp

21 M2y

Abbreviations: AS = absence seizures; AtS = atonic seizures; bg = background; CC = corpus callosum; DNM1 = dynamin 1; FED = focal epileptiform discharges; FIRES = febrile infection-related epilepsy

syndrome; FL = frontal lobe; FS = focal seizures; GPFA

hypsarrhythmia; ID

multifocal epileptiform discharges; MS = myoclonic seizures; NA = not applicable;

seizure; TS = tonic seizures.

mega cisterna magna; MFED

generalized paroxysmal fast activity; GSW = generalized spike-wave or polyspike-wave discharges; GTCS = generalized tonic-clonic seizures; Hyps

infantile spasms; KD = ketogenic diet; MCM

intellectual disability; IS =

NVNA = nonverbal, nonambulatory; SE = status epilepticus; SSW = slow spike-wave discharges; sz

2Except for patients 12 and 13 (sib pair), all mutations were proven to have occurred de novo.

b Seizure type at onset.

Neurology 89
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9Previously reported.®
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occurred in 16 of 19 patients (84%), GTCS in 12 of
19 patients (63%), typical and atypical absence seiz-
ures and tonic seizures in 9 of 19 patients (47%),
focal seizures in 7 of 19 patients (37%), and atonic
seizures in 5 of 19 patients (26%). Five patients had
status epilepticus (26%). There were no consistent
precipitating factors for seizures: patients 10, 14, and
18 showed sensitivity to higher temperatures and
fever; patient 8 had reflex seizures; and patient 17 had
nonepileptic myoclonic jerks that were elicited by
touch and sound.

EEG features. Abnormal EEG findings were found
in all patients with seizures and the patient with non-
epileptic myoclonic jerks. One patient (patient 1) had
only nonspecific background slowing, while 19 of 20
patients (95%) had epileptiform discharges on EEG
and background slowing. Multifocal epileptiform dis-
charges were the most frequent finding, present in 14
of 20 patients (70%). Hypsarrhythmia occurred in 11
of 20 patients (55%). Other epileptiform features
observed in a subset of patients included slow spike-
wave discharges (9 of 20 patients, 45%), generalized
spike-wave activity (6 of 20 patients, 30%), paroxys-
mal fast activity (4 of 20 patients, 20%), and focal
epileptiform discharges (4 of 20 patients, 20%).

Medication response. Seizure outcome was assessed in
18 patients: 15 of 18 patients (83%) had refractory
seizures. Three patients (17%) became seizure-free
on treatment. Patient 19 became seizure-free on the
ketogenic diet (KD) at the age of 3.5 years; patient 21
had a dramatic reduction of myoclonic seizures in the
second year of life while on the KD and continues to
have frequent nonepileptic myoclonic jerks. Seizures
in patient 1 were refractory until the age of 6 years,
when she became seizure-free on levetiracetam and
lamotrigine.

Improvement in seizure control, but not seizure
freedom, was observed with clobazam or clonazepam
in 5 of 20 patients (25%), steroids or adrenocortico-
tropic hormone in 4 of 20 patients (20%), topiramate
or zonisamide in 3 of 20 patients (15%), and the KD
in 5 of 20 patients (25%). Worsening of seizures was
reported in individual patients with levetiracetam, the
KD, and cannabidiol. Nonepileptic myoclonic jerks
in patient 17 improved on clonazepam.

Tone and movement disorders. A broad range of other
neurologic symptoms was observed, including hypo-
tonia in 19 of 21 patients (90%); movement disor-
ders, including choreoathetosis and dystonia, in 11
of 21 patients (52%); and spasticity in 5 of 21 pa-
tients (24%). Video recordings of the siblings 2.5
and 4.7 years of age showing their movement disorder
and profound hypotonia are available (videos 1-3 at
Neurology.org).

Dysmorphic features. Mild dysmorphic features were
seen in 8 of 21 patients (38%), but a consistent
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[ Table 2 Structural locations and functional implications of DNM1 mutations ]

Variant Domain Motif'2

p.Gly43Ser GTPase P loop —
p.Ser45Asn GTPase P loop —
p.Thr65Asn GTPase Switch | —
p.Glyl39Val GTPase Switch Il

p.Alal77Pro  GTPase Transstabilization loop —
p.Lys206Glu  GTPase G4 loop —
p.Lys206Asn GTPase G4 loop —
p.Arg237Trp GTPase G5 motif —
p.Ser238lle GTPase G5 motif —
p.Gly346Val  Middle/stalk — 3
p.Gly359Arg Middle/stalk — 3
p.Gly359Ala  Middle/stalk — 3
p.Glu373Lys  Middle/stalk — 3
p.Gly397Asp Middle/stalk — 3

Abbreviation: DNM1 = dynamin 1.

dysmorphic pattern was not identified. Bitemporal
narrowing was found in 3 patients (patients 10, 14,
and 17). Eight of 21 patients had microcephaly.

Neuroimaging findings. Brain MRI was performed in
19 of 21 patients (90%) and was unremarkable in 10
of 19 patients (53%). Six of 19 patients (32%) had
cerebral volume loss over time, which was observed
as early as 2 years (patient 10). Patient 19 had delayed
myelination and a thin corpus callosum.

Atypical phenotypes. Our cohort included 3 patients
with phenotypes that stood out from the overall
group. Patient 2 (c.134G>A; p.Serd5Asn) and
patient 17 (c.1075G>A; p.Gly359Arg) did not have
epileptic seizures. Patient 2 was studied at 24 months,
an age when 18 of 19 patients had already had seiz-
ures. He had profound developmental delay and was
nonverbal and nonambulatory; his EEG was normal.
Patient 17 had profound developmental delay at 1
year. He had multifocal, low-amplitude myoclonic
jetks that were shown to be nonepileptic on several
EEG recordings. His EEG showed background

slowing and multifocal spikes.

Interface

Dysfunctional step Notes

Mutation located in the G1 motif of
the GTPase domain, involved in GTP
binding; mutation possibly impairs
nucleotide binding due to steric
hindrance by serine

GTP hydrolysis

GTP hydrolysis Mutation in the GTPase domain of
dynamin, mutant is defective in GTP
binding®°-3*

GTP hydrolysis p.Thr65Asn/Asp/His mutation
dramatically lowers both the rate of
assembly-stimulated GTP hydrolysis
presumably by disrupting the
catalytic water for a nucleophilic
attack on the gamma PO4 and the
affinity for GTP by disrupting the
coordination of the bound Mg*®
GTP hydrolysis Backbone carbonyl directly
coordinates bridging water'?
GTP hydrolysis Mutation has a diffuse cytosolic
distribution accompanied by
puncta”

GTP hydrolysis

GTP hydrolysis Results in decreased protein

levelst”
GTP hydrolysis Disrupts GTP hydrolysis*?
GTP hydrolysis
Oligomeric assembly
Oligomeric assembly

Oligomeric assembly  Disrupts higher-order DNM1

oligomerization®”
Oligomeric assembly

Mutant is defective for assembly-
stimulated GTP hydrolysis*®

Oligomeric assembly

Patient 20 (c.1117G>A; p.Glu373Lys) had nor-
mal development before the onset of refractory status
epilepticus after a mild febrile illness at the age of 4.5
years, a phenotype consistent with febrile infection-
related epilepsy syndrome.'®

Phenotype associated with p.Arg237Trp mutation. Seven
of 21 patients (33%) had the recurrent p.Arg237Trp
mutation and had infantile spasms with developmen-
tal delay before seizure onset, progressing to refractory
epilepsy with GTCS. Five of 7 patients (71%) had
prominent hyperkinetic movements, dystonic postur-
ing of the head and limbs, and/or ataxic gait in pa-
tients who achieved independent ambulation.
These clinical features were less frequent in the
remainder of the patient cohort, with infantile
spasms in 9 of 13 patients (69%), GTCS in 5 of
13 patients (38%), refractory epilepsy in 8 of 11 pa-
tients (72%), and movement disorder in 6 of 13 pa-
tients (46%). Taken together, the patients with the
p-Arg237Trp mutation showed a relatively homoge-
neous phenotype compared with the overall patient
cohort.
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[ Figure 1 Locations of identified variants in DNM1 protein ]

Alteration:

? Patient

A Control

PH [] GeD [ PRD
A AA A
631 746 864

DNM1 protein (NP_.004399) domain structure with locations of variants identified in patients (listed above the image) and
controls from population databases such as ESP, ExAC, and 1000Genomes (listed below the image). All members of the
dynamin family contain the GTPase domain involved in GTP binding and hydrolysis, the middle domain and GED required
for oligomerization and stimulation of the GTPase activity, the PH domain for lipid binding, and the PRD, which interacts with
Src-homology-3 domain-containing proteins (figure generated with IBS32). DNM1 = dynamin 1; ESP = Exome Sequencing
Project; EXAC = Exome Aggregation Consortium; GED = GTPase effector domain; PH = pleckstrin-homology; PRD =

proline-rich domain.

Adult and older adolescent phenotype. Four patients
were =16 years of age (patients 4, 8, 10, and 15); 2
had the recurrent p.Arg237Trp mutation (patients 8
and 10). All had multidrug-resistant epilepsy per-
sisting into adulthood, and their phenotype did not
differ from that of the overall cohort. One patient
developed severe reflex seizures triggered by actions of
personal hygiene such as brushing her teeth. All pa-
tients had severe intellectual disability; only one

patient was ambulatory.

Computational structural modeling. All GTPase domain
variants occur in key catalytic motifs (p.Gly43Ser,
p-Ser45Asn, p.Thr65Asn, p.Gly139Val, p.Alal77Pro,
p-Lys206Asn, p.Lys206Glu, p.Arg237Trp, and
p-Ser238lle), and all affect GTP binding, hydrolysis,
or stability (figure 2B). Two of the observed variants
(p-Thr65Asn and p.Arg237Trp) have been previously
described.'” Briefly, the position p.Thr65 is present
in the switch I motif and coordinates a bound Mg>*
where substitution for an asparagine (p.Thr65Asn)
would greatly impair GTP hydrolysis (figure 2B).
The p.Gly139Val variant is present in the switch II
motif that positions a bridging water in the catalytic
site adjacent to the Thr65 position.'* The p.Arg237Trp
variant occurs in the dynamin-specific G5 motif. The
p-Arg237 residue stabilizes the transition state by
undergoing a 180° rotation during GTP hydrolysis,
causing a large conformational switch in the surrounding
region.'” This switching is likely to be perturbed by the
larger tryptophan residue (figure 2B).

The p.Lys206Asn and p.Lys206Glu variants
occur in the nucleotide specificity G4 loop of the
GTPase domain and interact with the guanosine
and ribose moieties of the bound GTP (figure
2B)."* This position is involved in direct contact with

Neurology 89 July 25, 2017

the bound nucleotide and likely influences its stabi-
lization and binding. The p.Lys206Asn variant leads
to a decrease in protein stability,'” suggesting GTP
binding as a stabilization step.

In addition, 2 other variants (p.Gly43Ser and
p-Ser45Asn) result in GTP affinity perturbations.
Both interact via the oxygen/phosphate backbone
with the bound GDP. Point mutations at position
45 are defective in GTP binding.'®

The p.Alal77Pro variant, found in the transstabi-
lizing loop, introduces a severe steric clash near the
p.Arg237 switching residue. The proline introduces
more steric constraint and affects the dynamics
of the arginine in position 237 (figure 2B). The
p-Ser238lle variant results in a disruption of p.Arg237
switching dynamics (figure 2B). The p.Ser238 resi-
due rotates from a buried position to a solvent-
exposed position that is sandwiched between the
bound nucleotide cofactor and acts to stabilize the
helix dipole formed by the p.Arg237 movement.
The variant p.Ser238lle introduces an energetically
unfavorable hydrophobic residue. This results in
a perturbation to the DNM1 p.Arg237 switching
mechanism.

Four variants are localized to the middle domain
of DNMI (p.Glu373Lys, p.Gly359Ala, p.Gly359Arg,
and p.Gly397Asp) (figure 2C). They occur at the tet-
ramer interface 3 and likely disrupt oligomerization.
The p.Gly397Asp variant leads to a buildup of positive
charge, disrupting normal interactions. Studies of the
crystal structure of rat DNMI indicate that this muta-
tion interferes with self-assembly, leading to impaired
GTP hydrolysis and stalled synaptic endocytosis."

DISCUSSION Here, we describe the phenotypic spec-
trum of patients with de novo mutations in DNM1,



[ Figure 2 Functional consequences of DNM1 mutations ]

A

B. GTPase domain

p.K206n

A

|

Arg switching

MG coordination GTP orientation Severe steric clash Flexibility occurs Destabilizing charge Functionally
through guanosine within the middle build-up shown to be
stabilization and domain, Ala might assembly
ribose binding drive helix stability deficient

(A) The entire DNM1 monomer is shown as a cartoon and colored by the GTPase domain (peach), middle domain (white), GED (teal), and PH domain (gold).
ExAC missense alteration (blue spheres) and variants discussed in this study (magenta spheres) are shown. (B) Close-up view of the GTPase domain
GTP-binding surface with detailed descriptions of the mode of anticipated protein disruption from select observed variants (p.Thr65Asn, p.Alal77Pro,
p.Lys206Asn, p.Arg237Trp). (C) Detailed description of the mode of anticipated protein disruption of observed middle domain variants (p.Gly359Ala and
p.Gly397Asp). DNM1 = dynamin 1; EXAC = Exome Aggregation Consortium; GED = GTPase effector domain; PH = pleckstrin-homology.

encoding a key component of synaptic vesicle recy-
cling. DNM1 initially emerged as a novel disease gene
in large-scale genetic studies, but the full phenotypic
and genetic spectrum has not yet been described. We
show that patients with DNMI mutations have
a phenotype characterized by intellectual disability,
hypotonia, and refractory epilepsy typically presenting
with infantile spasms. One-third of patients had the
recurrent ¢.709C>T (p.Arg237Trp) mutation and
a homogeneous phenotype.

Mutations in genes encoding synaptic vesicle pro-
teins are increasingly recognized as causal for neuro-
developmental disorders, including the epilepsies.
Implicated synaptic genes include DNMI, STXBPI,
STXIB, and SNAP25.*°* The DNMI protein is

a key component of vesicle recycling. It is the main
driver for invagination of clathrin-coated synaptic
vesicles, which occurs through a process of GTP-
mediated oligomeric assembly.?*** The predomi-
nance of intractable epilepsies in patients with
DNM]1 encephalopathy reinforces the notion that
in addition to disrupted synaptic vesicle fusion, dis-
ordered vesicle recycling may represent a key step in
epileptogenesis.

DNM1 encephalopathy is a disease of vesicle fis-
sion, and the mutations in our patient cohort cluster
in 2 major functional domains of the DNM1 protein:
the GTPase domain and the middle domain. Our
structural modeling studies suggest a dominant-
negative effect for all mutations studied. Even though
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all mutations are predicted to impair the process of
endocytosis, the locations of the variants indicate dis-
ruptions at different stages of vesical invagination
(figure 2). Most of the variants in the GTPase domain
are predicted to impair GTP hydrolysis but not the
binding to the synaptic vesicle, resulting in intact
oligomeric assembly but impaired vesicle scission,?
which has been shown experimentally for the
p-Alal77Pro variant.'” In contrast, middle domain
variants are predicted to affect the ability of DNM1
to form larger oligomeric assemblies. Accordingly,
even though mutations in both domains result in
comparable phenotypes, we predict that the mecha-
nism of protein disruption is different.

The relative phenotypic homogeneity of patients
with DNMI mutations is remarkable and might
guide clinicians to initiate targeted genetic testing
especially when gene panel analysis or exome
sequencing is not available. While mutations in other
well-recognized  epilepsy-causing genes such as
SCN2A, SCN8A, or STXBPI result in a wide range
of disorders, including mild and severe epilepsies and
even isolated autism spectrum disorders,>*>*¢ the
majority of patients with DNMI encephalopathy
have a relatively homogeneous developmental and
epileptic encephalopathy. The onset of seizures after
the neonatal period may be explained by the expres-
sion of the DNM1 protein. DNM]I expression in-
creases postnatally in parallel to synapse formation;
however, DNMI1 is not required for initial synapse
formation.?”-*

Patients with DNM1I encephalopathy typically
have intractable epilepsy with limited efficacy of anti-
epileptic medications. While the KD and treatment
with benzodiazepines provided benefit in some pa-
tients, most patients had intractable epilepsy that con-
tinued into adulthood. This contrasts with many
genetic epilepsies such as SCN24, KCNQ2, and
STXBPI encephalopathy, in which some patients
show seizure remission despite severe long-term
developmental consequences. However, during the
initial course of the epilepsy, patients with various
genetic causes can have remarkably similar clinical
presentations.

Patients with the recurrent p.Arg237Trp muta-
tion account for one-third of patients with DNM1
encephalopathy in our series. Given that DNM1 mu-
tations account for up to 2% of patients with severe
epilepsy,” this mutation may represent one of the
most frequent single mutations in patients with epi-
leptic encephalopathies. The relatively homogeneous
phenotype and the predicted dominant-negative
mechanism of this mutation make DNM]I encepha-
lopathy an interesting therapeutic target for pharma-
cologic approaches and gene therapy to restore
DNM1 function.

Neurology 89 July 25, 2017

Our cohort of 21 cases is relatively small because
DNM]1 encephalopathy has only recently been dis-
covered.®” Recruitment bias may have distorted the
phenotypic picture of patients with DNM1 encepha-
lopathy because patients have been recruited largely
through studies of epileptic encephalopathies. How-
ever, we have reason to believe that the phenotypic
spectrum with prominent epilepsy presented in our
study reflects the overall clinical picture of DNMI
encephalopathy. First, we included patients ascer-
tained from a large diagnostic laboratory, which is
a source of relatively unbiased recruitment with re-
gard to the epilepsy phenotype. Second, we reviewed
the available data in the Deciphering Developmental
Disorders Study.” In this cohort, 5 patients were
identified with nonsynonymous de novo missense
mutations in a cohort of patients with broad devel-
opmental disorders. Human phenotype ontology
terms of these patients indicate that 4 of the 5 patients
had seizures, suggesting that epilepsy is a prominent
feature of DNM1I encephalopathy. In addition, our
cohort comprises twice as many male as female pa-
tients. Whether this reflects a true preponderance of
male patients or is simply due to chance remains
unclear at the moment.

We delineate the phenotypic spectrum of DNM1
encephalopathy, an emerging disease of synaptic ves-
icle fission. This developmental and epileptic enceph-
alopathy is characterized by severe to profound
developmental delay, infantile-onset epilepsy begin-
ning with infantile spasms, and movement disorder.
The genetic landscape of DNM1 encephalopathy is
notable for the recurrent ¢.709C>T (p.Arg237Trp)
variant, together with localization of mutations to
specific domains of the protein. Characterizing
DNM1 encephalopathy as a unique condition leading
to an intractable epileptic encephalopathy will lay the
foundation for the development of targeted therapies.
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